Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.

Identifieur interne : 004293 ( Main/Exploration ); précédent : 004292; suivant : 004294

Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.

Auteurs : Bernd W. Schoenmuth [Allemagne] ; Wilfried Pestemer

Source :

RBID : pubmed:15506637

Descripteurs français

English descriptors

Abstract

BACKGROUND, AIM AND SCOPE

Problems of long-term existence of the environmental contaminant 2,4,6-trinitrotoluene (TNT) and necessities for the use of trees ('dendroremediation') in sustainable phytoremediation strategies for TNT are described in the first part of this paper. Aims of the second part are estimation of [14C]-TNT uptake, localisation of TNT-derived radioactivity in mature tree tissues, and the determination of the degree of TNT-degradation during dendroremediation processes.

METHODS

Four-year-old trees of hybrid willow (Salix spec., clone EW-20) and of Norway spruce (Picea abies) were cultivated in sand or ammunition plant soil (AP-soil) in wick supplied growth vessels. Trees were exposed to a single pulse application with water solved [U-14C]-TNT reaching a calculated initial concentration of 5.2 mg TNT per kg dry soil. Two months after application overall radioactivity and extractability of 14C were determined in sand/soil, roots, stem-wood, stem-bark, branches, leaves, needles, and Picea May sprouts. Root extracts were analysed by radio TLC.

RESULTS

60 days after [14C]-TNT application, recovered 14C is accumulated in roots (70% for sand variants, 34% for AP-soil variant). 15-28% of 14C remained in sand and 61% in AP-soil. 3.3 to 14.4% of 14C were located in aboveground tree portions. Above-ground distribution of 14C differed considerably between the angiosperm Salix and the gymnosperm Picea. In Salix, nearly half of above-ground-14C was detected in bark-free wood, whereas in Picea older needles contained most of the above-ground-14C (54-69%). TNT was readily transformed in tree tissue. Approximately 80% of 14C was non-extractably bound in roots, stems, wood, and leaves or needles. Only quantitatively less important stem-bark of Salix and Picea and May shoots of Picea showed higher extraction yields (up to 56%).

DISCUSSION

Pulse application of [14C]-TNT provided evidence for the first time that after TNT-exposure, in tree root extracts, no TNT and none of the known metabolites, mono-amino-dinitrotoluenes (ADNT), diaminonitrotoluenes (DANT), trinitrobenzene (TNB) and no dinitrotoluenes (DNTs) were present. Extractable portions of 14C were small and contained at least three unknown metabolites (or groups) for Salix. In Picea, four extractable metabolites (or groups) were detected, where only one metabolite (or group) seemed to be identical for Salix and Picea. All unknown extractables were of a very polar nature.

CONCLUSIONS

Results of complete TNT-transformation in trees explain some of our previous findings with 'cold analytics', where no TNT and no ADNT-metabolites could be found in tissues of TNT-exposed Salix and Populus clones. It is concluded that 'cold' tissue analysis of tree organs is not suited for quantitative success control of phytoremediation in situ.

RECOMMENDATIONS AND OUTLOOK

Both short rotation Salicaceae trees and conifer forests possess a dendroremediation potential for TNT polluted soils. The degradation capacity and the large biomass of adult forest trees with their woody compartments of roots and stems may be utilized for detoxification of soil xenobiotics.


DOI: 10.1007/BF02979648
PubMed: 15506637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.</title>
<author>
<name sortKey="Schoenmuth, Bernd W" sort="Schoenmuth, Bernd W" uniqKey="Schoenmuth B" first="Bernd W" last="Schoenmuth">Bernd W. Schoenmuth</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Ecotoxicology and Ecochemistry in Plant Protection, Federal Biological Research Centre for Agriculture and Forestry (BBA), Koenigin-Luise-Str. 19, D-14195 Berlin, Germany. berndschoenmuth@yahoo.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Ecotoxicology and Ecochemistry in Plant Protection, Federal Biological Research Centre for Agriculture and Forestry (BBA), Koenigin-Luise-Str. 19, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pestemer, Wilfried" sort="Pestemer, Wilfried" uniqKey="Pestemer W" first="Wilfried" last="Pestemer">Wilfried Pestemer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15506637</idno>
<idno type="pmid">15506637</idno>
<idno type="doi">10.1007/BF02979648</idno>
<idno type="wicri:Area/Main/Corpus">004177</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004177</idno>
<idno type="wicri:Area/Main/Curation">004177</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004177</idno>
<idno type="wicri:Area/Main/Exploration">004177</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.</title>
<author>
<name sortKey="Schoenmuth, Bernd W" sort="Schoenmuth, Bernd W" uniqKey="Schoenmuth B" first="Bernd W" last="Schoenmuth">Bernd W. Schoenmuth</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Ecotoxicology and Ecochemistry in Plant Protection, Federal Biological Research Centre for Agriculture and Forestry (BBA), Koenigin-Luise-Str. 19, D-14195 Berlin, Germany. berndschoenmuth@yahoo.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Ecotoxicology and Ecochemistry in Plant Protection, Federal Biological Research Centre for Agriculture and Forestry (BBA), Koenigin-Luise-Str. 19, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pestemer, Wilfried" sort="Pestemer, Wilfried" uniqKey="Pestemer W" first="Wilfried" last="Pestemer">Wilfried Pestemer</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="ISSN">0944-1344</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon Radioisotopes (metabolism)</term>
<term>Carbon Radioisotopes (pharmacokinetics)</term>
<term>Environmental Pollution (prevention & control)</term>
<term>Picea (chemistry)</term>
<term>Picea (growth & development)</term>
<term>Plant Roots (physiology)</term>
<term>Salix (chemistry)</term>
<term>Salix (growth & development)</term>
<term>Soil Pollutants (isolation & purification)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Soil Pollutants (pharmacokinetics)</term>
<term>Solubility (MeSH)</term>
<term>Trees (MeSH)</term>
<term>Trinitrotoluene (isolation & purification)</term>
<term>Trinitrotoluene (metabolism)</term>
<term>Trinitrotoluene (pharmacokinetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2,4,6-Trinitro-toluène (isolement et purification)</term>
<term>2,4,6-Trinitro-toluène (métabolisme)</term>
<term>2,4,6-Trinitro-toluène (pharmacocinétique)</term>
<term>Arbres (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Picea (composition chimique)</term>
<term>Picea (croissance et développement)</term>
<term>Polluants du sol (isolement et purification)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Polluants du sol (pharmacocinétique)</term>
<term>Pollution de l'environnement (prévention et contrôle)</term>
<term>Racines de plante (physiologie)</term>
<term>Radio-isotopes du carbone (métabolisme)</term>
<term>Radio-isotopes du carbone (pharmacocinétique)</term>
<term>Salix (composition chimique)</term>
<term>Salix (croissance et développement)</term>
<term>Solubilité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Soil Pollutants</term>
<term>Trinitrotoluene</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Radioisotopes</term>
<term>Soil Pollutants</term>
<term>Trinitrotoluene</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Carbon Radioisotopes</term>
<term>Soil Pollutants</term>
<term>Trinitrotoluene</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Picea</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Picea</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Picea</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Picea</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>2,4,6-Trinitro-toluène</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>2,4,6-Trinitro-toluène</term>
<term>Polluants du sol</term>
<term>Radio-isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>2,4,6-Trinitro-toluène</term>
<term>Polluants du sol</term>
<term>Radio-isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Environmental Pollution</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Pollution de l'environnement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Solubility</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomasse</term>
<term>Dépollution biologique de l'environnement</term>
<term>Solubilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND, AIM AND SCOPE</b>
</p>
<p>Problems of long-term existence of the environmental contaminant 2,4,6-trinitrotoluene (TNT) and necessities for the use of trees ('dendroremediation') in sustainable phytoremediation strategies for TNT are described in the first part of this paper. Aims of the second part are estimation of [14C]-TNT uptake, localisation of TNT-derived radioactivity in mature tree tissues, and the determination of the degree of TNT-degradation during dendroremediation processes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Four-year-old trees of hybrid willow (Salix spec., clone EW-20) and of Norway spruce (Picea abies) were cultivated in sand or ammunition plant soil (AP-soil) in wick supplied growth vessels. Trees were exposed to a single pulse application with water solved [U-14C]-TNT reaching a calculated initial concentration of 5.2 mg TNT per kg dry soil. Two months after application overall radioactivity and extractability of 14C were determined in sand/soil, roots, stem-wood, stem-bark, branches, leaves, needles, and Picea May sprouts. Root extracts were analysed by radio TLC.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>60 days after [14C]-TNT application, recovered 14C is accumulated in roots (70% for sand variants, 34% for AP-soil variant). 15-28% of 14C remained in sand and 61% in AP-soil. 3.3 to 14.4% of 14C were located in aboveground tree portions. Above-ground distribution of 14C differed considerably between the angiosperm Salix and the gymnosperm Picea. In Salix, nearly half of above-ground-14C was detected in bark-free wood, whereas in Picea older needles contained most of the above-ground-14C (54-69%). TNT was readily transformed in tree tissue. Approximately 80% of 14C was non-extractably bound in roots, stems, wood, and leaves or needles. Only quantitatively less important stem-bark of Salix and Picea and May shoots of Picea showed higher extraction yields (up to 56%).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DISCUSSION</b>
</p>
<p>Pulse application of [14C]-TNT provided evidence for the first time that after TNT-exposure, in tree root extracts, no TNT and none of the known metabolites, mono-amino-dinitrotoluenes (ADNT), diaminonitrotoluenes (DANT), trinitrobenzene (TNB) and no dinitrotoluenes (DNTs) were present. Extractable portions of 14C were small and contained at least three unknown metabolites (or groups) for Salix. In Picea, four extractable metabolites (or groups) were detected, where only one metabolite (or group) seemed to be identical for Salix and Picea. All unknown extractables were of a very polar nature.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Results of complete TNT-transformation in trees explain some of our previous findings with 'cold analytics', where no TNT and no ADNT-metabolites could be found in tissues of TNT-exposed Salix and Populus clones. It is concluded that 'cold' tissue analysis of tree organs is not suited for quantitative success control of phytoremediation in situ.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECOMMENDATIONS AND OUTLOOK</b>
</p>
<p>Both short rotation Salicaceae trees and conifer forests possess a dendroremediation potential for TNT polluted soils. The degradation capacity and the large biomass of adult forest trees with their woody compartments of roots and stems may be utilized for detoxification of soil xenobiotics.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15506637</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0944-1344</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.</ArticleTitle>
<Pagination>
<MedlinePgn>331-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND, AIM AND SCOPE" NlmCategory="OBJECTIVE">Problems of long-term existence of the environmental contaminant 2,4,6-trinitrotoluene (TNT) and necessities for the use of trees ('dendroremediation') in sustainable phytoremediation strategies for TNT are described in the first part of this paper. Aims of the second part are estimation of [14C]-TNT uptake, localisation of TNT-derived radioactivity in mature tree tissues, and the determination of the degree of TNT-degradation during dendroremediation processes.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Four-year-old trees of hybrid willow (Salix spec., clone EW-20) and of Norway spruce (Picea abies) were cultivated in sand or ammunition plant soil (AP-soil) in wick supplied growth vessels. Trees were exposed to a single pulse application with water solved [U-14C]-TNT reaching a calculated initial concentration of 5.2 mg TNT per kg dry soil. Two months after application overall radioactivity and extractability of 14C were determined in sand/soil, roots, stem-wood, stem-bark, branches, leaves, needles, and Picea May sprouts. Root extracts were analysed by radio TLC.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">60 days after [14C]-TNT application, recovered 14C is accumulated in roots (70% for sand variants, 34% for AP-soil variant). 15-28% of 14C remained in sand and 61% in AP-soil. 3.3 to 14.4% of 14C were located in aboveground tree portions. Above-ground distribution of 14C differed considerably between the angiosperm Salix and the gymnosperm Picea. In Salix, nearly half of above-ground-14C was detected in bark-free wood, whereas in Picea older needles contained most of the above-ground-14C (54-69%). TNT was readily transformed in tree tissue. Approximately 80% of 14C was non-extractably bound in roots, stems, wood, and leaves or needles. Only quantitatively less important stem-bark of Salix and Picea and May shoots of Picea showed higher extraction yields (up to 56%).</AbstractText>
<AbstractText Label="DISCUSSION" NlmCategory="CONCLUSIONS">Pulse application of [14C]-TNT provided evidence for the first time that after TNT-exposure, in tree root extracts, no TNT and none of the known metabolites, mono-amino-dinitrotoluenes (ADNT), diaminonitrotoluenes (DANT), trinitrobenzene (TNB) and no dinitrotoluenes (DNTs) were present. Extractable portions of 14C were small and contained at least three unknown metabolites (or groups) for Salix. In Picea, four extractable metabolites (or groups) were detected, where only one metabolite (or group) seemed to be identical for Salix and Picea. All unknown extractables were of a very polar nature.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Results of complete TNT-transformation in trees explain some of our previous findings with 'cold analytics', where no TNT and no ADNT-metabolites could be found in tissues of TNT-exposed Salix and Populus clones. It is concluded that 'cold' tissue analysis of tree organs is not suited for quantitative success control of phytoremediation in situ.</AbstractText>
<AbstractText Label="RECOMMENDATIONS AND OUTLOOK" NlmCategory="CONCLUSIONS">Both short rotation Salicaceae trees and conifer forests possess a dendroremediation potential for TNT polluted soils. The degradation capacity and the large biomass of adult forest trees with their woody compartments of roots and stems may be utilized for detoxification of soil xenobiotics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schoenmuth</LastName>
<ForeName>Bernd W</ForeName>
<Initials>BW</Initials>
<AffiliationInfo>
<Affiliation>Institute for Ecotoxicology and Ecochemistry in Plant Protection, Federal Biological Research Centre for Agriculture and Forestry (BBA), Koenigin-Luise-Str. 19, D-14195 Berlin, Germany. berndschoenmuth@yahoo.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pestemer</LastName>
<ForeName>Wilfried</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>118-96-7</RegistryNumber>
<NameOfSubstance UI="D014303">Trinitrotoluene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004787" MajorTopicYN="N">Environmental Pollution</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014303" MajorTopicYN="N">Trinitrotoluene</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15506637</ArticleId>
<ArticleId IdType="doi">10.1007/BF02979648</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2002;9(1):29-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11885416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2001 Apr 15;35(8):1561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2001 Aug;44(5):1259-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Nov 1;36(21):4649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2000 Jan;40(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10665438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2004;11(4):273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2000 Jan;40(1):11-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10665439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 1999;6(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1999 Jun;38(14):3383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10390848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1973 May;51(5):907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 1998;5(4):202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19002633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 1994 Dec;1(4):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Jan 1;36(1):112-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11811476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2000 Sep;47(1):96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Pestemer, Wilfried" sort="Pestemer, Wilfried" uniqKey="Pestemer W" first="Wilfried" last="Pestemer">Wilfried Pestemer</name>
</noCountry>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Schoenmuth, Bernd W" sort="Schoenmuth, Bernd W" uniqKey="Schoenmuth B" first="Bernd W" last="Schoenmuth">Bernd W. Schoenmuth</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004293 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004293 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15506637
   |texte=   Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15506637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020